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Error estimates for algorithms based on truncations for evaluating electrostatic 
interactions in molecular dynamics applications are very important  for several 
reasons. For example, the estimates are necessary to establish the validity of the 
simulations and can be used to estimate various simulation parameters. Very 
precise estimates have been found for the Ewald method and the related particle 
mesh Ewald method. However, for the very popular fast multipole method such 
a precise estimate is not available. In this paper, we illustrate the rather 
complicated error behavior of  the fast mtiltipole method and we use statistical 
methods to derive an estimate for the root mean square error on the forces. 
Furthermore, the expected maximum error on the force acting on a single 
particle is studied. The estimates are tested against errors obtained from simula- 
tions and are found to be very precise. 

KEY WORDS: Electrostatic pair interactions: fast multipole method; 
estimates of  errors due to truncations. 

1. I N T R O D U C T I O N  

With the increase of computer power, molecular dynamics simulations of 
large systems containing proteins, polymers, and solvent molecules have 
become an important method for understanding various mechanisms in, 
for example, the human body. However, if such simulations are to be relied 
on, the forces on the atoms must be calculated precisely. There are two 
types of nonbonded pair forces which act on atoms in classical mechanical 
pictures of c6ndensed matter 

�9 Short-ranged (van der Waals) forces 

�9 Electrostatic forces 
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Modem molecular dynamics simulations use very large samples. To bring 
down computation time within reasonable bounds, the forces cannot be 
calculated exactly, they are rather approximated to some specific accuracy. 
It is very important to understand what the error on the force is as a func- 
tion of the approximation. The short-ranged forces are approximated by 
simply neglecting interactions at distances bigger than some cutoff. 
The error behavior as a function of the cutoff is well understood{2( 

In this paper we shall study the error in the long-ranged electrostatic 
interactions when calculated using the fast multipole method. The error 
behavior of these interaction approximations is much more complicated 
than for the error in using a cutoff for the short-ranged interactions. 

The model system that we are going to study consists of N charges 
q, ..... q.v (satisfying ~.iN= t q i = 0 )  positioned at R, ..... RA, in a cubic box (of 
sidelength A). The box is embedded in a three-dimensional infinite array of 
copies of the box. The overall potential energy of the N charges can then 
be written as 

N N q~q~ 

1 h! ~ ,  ~ ~ [ r , - - r i+n l  U,,(r, ..... rN)=~-~ .i_m .~-~ i=, j=,  

Lnl < K 

(1) 

where ri = R f l A ,  i = 1 ..... N ,  and where the asterisk indicates that the terms 
i = j, n = 0 are to be omitted. Notice that we have assumed the summation 
order to be spherical. Other shapes of summation lead to different values. ~z~ 
However, the results of this paper can easily be generalized to those cases. 
Below we shall assume that the spherical array of copies is surrounded by 
a conductor (truly periodic boundary conditions). 

Whatever method is used to calculate the electrostatic forces, trunca- 
tions have to be made which lead to errors in the potential energy and in 
the forces on the charges. A very significant, widely used, and robust error 
measure is 

6] ..... = I2 { f P " ~ ' - f T ~ ' " ~ )  2 (2) 
i = !  

where f~ ..... is the exact force acting on charge number i and f:]pprox is the 
force acting on the ith charge when calculated by some approximate 
method. Also of interest is the maximum error on the force on a single 
particle, 

cVi ..... = max [(f~.,,,~,_f~pp~ox)2],/2 (3) 
i = I . . . . . N  
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In order to get relative error measures, we use the exact root mean square 
force 

fr.,~ = ( f  7""~') 2 (4) 
i l 

and we can thus define the relative root mean square error on the force 

e .... =6J'~,,,~/J;,,,,, (5) 

and the relative maximum error on the force 

e . . . . .  = 6 f , , , , , ~ / f ~ , , , s  (6) 

The form of the potential U,. in Eq. (1) corresponds to a pair interaction 
potential which is not periodic if the dipole moment  of the basic cube is not 
zero. The potential U for the truly periodic case differs from U,. by a term 
proportional to the square of the dipole moment  of the cube. ~a~ This 
potential U can be rewritten in several much more computationally useful 
forms, which we now review. 

One way is the famous Ewald method, ~4~ where the truly periodic 
potential energy can be written as 

1 [ ~ ~, erfc(~[r;-r/+n[) 
U(r l  ..... r , v ) = ~  . ' I~< i<;<,v  I r i - - r ; + n l  

N N 
+ ~, exp( -~r2k2/~2)~ ,  ~, q /q ;exp[2~r ik . r / - r , ) ]  

k # 0  

When using the Ewald method for computing the potential energy and the 
corresponding forces, only the minimum image term is included for each 
pair {i, j} of charges in the first term of (7). That is, instead of using a sum 
over all n �9 77 3, only the term corresponding to n;. ; = min.~ ~, ]r; - rj + n[ is 
considered for each pair {i, j}. In practice the k-sum is truncated at some 
[k[ = K  ..... and the erfc(x) sum is truncated at some cutoff x = r , . .  The 
parameter  0c can be chosen arbitrarily. 

For the Ewald method very precise theoretical estimates of dJ~ .... as a 
function of the truncation parameters  r,. and K ...... and the split parameter  
o~ have been found. ~~ It has furthermore been shown that the ratio 

c3f.,,,d,sZ . . . .  (8) 
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stays close to the expected values for a Gaussian distribution (2.5-3.5 for 
N =  10,000-1,000,000 ). Similar results have been found for the particle 
mesh Ewald method, c3"~2~ There are several advantages of having such 
estimates: For a given value of 0~ and desired accuracy, the truncation 
parameters r, and K ...... can be predicted theoretically by inverting the 
estimates. An optimization procedure may then be applied to choose the 0~ 
value that minimizes the overall computation time. Apart from enabling an 
optimal parameter choice, the estimates provides a lot of insight into the 
method. 

A very interesting and widely studied and applied method is the fast 
multipole method (FMM). c7~ The FMM has an even more complicated 
parameter choice than the Ewald method and no successful prediction of 
a root mean square (rms) force error or any other average error measure 
has been accomplished. In this paper we study the rms force error as func- 
tion of the chosen parameters. The error behavior turns out to be very 
complicated, but we have nonetheless found a very precise theoretical 
model for it. The precision is illustrated by comparisons with experimental 
results. A particular observation is that the ratio ~f,  ..... /~frm~ has huge non- 
Gaussian values. This estimate might be used to optimize computation 
time with respect to parameters in a way very similar to that used for the 
Ewald method, thus also providing new insight into the method. We shall 
discuss this briefly in the conclusion. The paper is organized as follows: 
In Section 2 we provide a description of the FMM. Section 3 is the main 
section and contains the derivation of the error estimates. The results are 
summarized in Section 4 and compared to experimental results in Section 5. 
We conclude the paper by some remarks about the qualitative error 
behavior and perspectives arising from the estimates found. 

2. THE FAST MULTIPOLE M E T H O D  ( F M M )  

In this section we will give a short description of the FMM, making 
it clear how it works, but without going into all details. It contains several 
modifications to the standard description, in particular in the definition of 
the spherical harmonics used and the treatment of periodic boundary 
conditions. 

Considering the potential acting on one charge, the idea applied in the 
FMM is to approximate the potential from distant charges by expansions 
and evaluate the contributions from nearby charges directly by pair inter- 
actions. The FMM uses external and internal expansions to approximate 
the electrostatic potential. The "external" and "internal" expansions are 
almost always called "multipole" and "local" expansions, respectively. 
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We shall therefore adopt these names. A multipole expansion is an infinite 
series of the form 

.~_ I y , / , ( ~ )  

~b(r)= Z Z AT' r,+, (9) 
/ = 0  m = - /  

where r = (r, 0, ~b) using spherical coordinates, and it describes the potential 
due to charges located in a sphere centered at the origin and it is valid out- 
side the sphere. The coefficients Af  depend on the positions of the charges 
and are given in Appendix A. The functions YT' are spherical harmonics 
(see below). Besides the creation of a multipole expansion, the operations 
on the expansions that will be used in the FMM are as follows, the transla- 
tion of the center of a multipole expansion, the conversion of a multipole 
expansion into a local expansion, and the translation of the center of a 
local expansion. A local expansion can be written as 

~b(r)= ~ ~ B'/'Y'/'(~)/ (10) 
/ = 0  m = - - /  

and describes the potential due to charges located outside a sphere centered 
at the origin and is valid inside the sphere. The FMM uses the important 
observation that the sum of contributions fi'om several multipole expan- 
sions, which are all valid in the domain of a local expansion, can be 
calculated by simply adding up contributions to the B'f fi'om the individual 
expansions. In Appendix A, we give formulas for the B'/' contributions as 
functions of the coefficients and expansion point of a given multipole 
expansion valid inside the sphere. In the FMM it is also necessary to trans- 
late multipole expansions and local expansions from one expansion point 
to another. Formulas for these are also listed in Appendix A. 

Of course these expansions are all truncated, so they consist of a finite 
number of terms. We write the truncated expansions as 

L / Y T ' ( f )  L / 
'" 9/ Y/(r) I "/ ~bL(r)= E E Az r-/-~T, ~bL(r)= E Z . . . . . . .  (11) 

I ~ 0  m = - - I  1 = 0  m = - - I  

Using spherical coordinates and writing r= ( r ,  O, ~), we use one of the 
standard definitions of spherical harmonics: 

= [2 I II-m) l 
L '~n (l+m)!J PT'(c~ for 1>~0, --l<~m<~l (12) 
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where the associated Legendre polynomials are defined as 

P';'(z)=(--1)"'(1--,2Y"/2d"'Pl(z) for 1>/0, 

and 

where 

O<.m<~l (13) 

Pt-"'(z) = ( - 1)"' (l--m)! (l+m)------~.P';'(z) for 1>~0, O<~m<l (14) 

1 d t 
Pl(z)=~.-~zl(z2--1)t for I>/0, - - l~<z<~l  

Notice that our definition of the spherical harmonics is a little different 
from the one used by Greengard and Rokhlin. 181 Using the definition above 
(where the spherical harmonics are orthonormal),  the theorems stating 
how to translate the center of a multipole expansion, convert a multipole 
expansion into a local expansion, and translate the center of a local expan- 
sion become a little simpler than the ones used by Greengard and Rokhlin 
(and othersCOsl). Furthermore, various results for spherical harmonics 
found in the literature may be applied directly, c6~ We state our version of 
the theorems in Appendix A. 

The F M M  belongs to the class of tree algorithms, where the computa- 
tional cell is repeatedly refined into smaller cells. Here the computational 
cell (which is a unit cube) is called refinement level 0. It is refined into eight 
equally sized cells, where each cell again is refined into eight even smaller 
cells and so on until some maximum refinement level S containing 8 s cells 
is reached. 

In the F MM the term nearest neighbors or just neighbors is used. 
The nearest neighbors of a given cell at some refinement level are the cells 
which share a face, an edge, or a comer  with the cell. Each cell has 26 
nearest neighbors. 

Another set of cells defined for all cells is the interaction list. The inter- 
action list of a given cell at some refinement level s consists of the cells at 
the same refinement level whose parents are nearest neighbors to the parent 
of the cell, but which are not themselves nearest neighbors of the cell. 
The interaction list contains 189 cells. See Fig. 1. 

Now we are ready to go through the algorithm. It consists of the 
following steps: 

�9 compute coefficients for the multipole expansion for each cell at 
refinement level S. 
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Fig. I. Two-dimensional cut showing the neigbors (marked N) and the interaction list 
(marked I L ) of the cell, marked C. Thick lines indicate the parent refinement level. 

�9 upward pass - -compute  coefficients for the multipole expansion for 
each cell at all refinement levels. 

�9 periodic boundary conditions. 

�9 downward pass - -compute  coefficients for the local expansion for 
each cell at all refinement levels. 

�9 direct calculations at refinement level S. 

Each step will now be treated in some detail. Before starting the 
upward pass, coefficients for the multipole expansion are computed for 
each cell at refinement level S. This multipole expansion describes the 
potential due to all charges located inside the cell, and it is valid outside 
the sphere which touches the corners of the cell. 

Now the upward pass can begin. It starts at refinement level S. where, 
for each cell, the center of the multipole expansion is translated to the 
center of  the parent cell. Each parent cell thus "receives" eight translated 
multipole expansions, which are added, and the result is a new multipole 
expansion (we will often use the term "adding expansions", although we 
actually mean combining them by adding their coefficients). The new 
multipole expansion describes the potential due to all charges inside the 
parent cell and it is valid outside the sphere which touches the corners of 
the cell. This process of translating and adding the expansions is repeated 
until a multipole expansion for the whole computat ional  cell about  its 
center is available. 

If periodic boundary conditions are used, then the multipole expan- 
sion obtained for the computat ional  cell is also a multipole expansion for 
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all the identical cells surrounding the computational cell. The multipole 
expansions from all cells except the computational cell and its nearest 
neighbors are now converted into local expansions centered at the center 
of the computational cell and added. If we for a moment assume that the 
infinite spherical array of cells is surrounded by vacuum, the result is a 
local expansion describing the potential due to all charges located outside 
the computational cell and its nearest neighbors and it is valid inside the 
sphere which touches the corners of the cell. This local expansion is the 
starting point for the downward pass. The sum mentioned above is infinite, 
but because of the fact that all the multipole expansions which are converted 
and added are equal, their coefficients can be taken outside the sum over 
periodic copies, and the infinite part is just a constant sum 

Y'/'(fi) 
S ( l , m )  ~ nl+, , l = 1  ..... 2L, m = - - l  ..... l (15) 

nEffJ  

for each coefficient, where 

t2=  {n=  (n,,  n~., n_), where n,., n:.,n: e 7/ and in[ >, , /~} (16) 

These constant sums can be calculated once for all using the chosen 
summation order (see Introduction). 

Consider now the downward pass. At refinement level zero the local 
expansion is translated to the center of each of the eight children. For each 
child (we are now at refinement level one) the received local expansion 
describes the potential from charges located outside the parent cell and the 
nearest neighbors of the parent cell. What we want is a local expansion 
describing the potential from charges outside the cell itself and its nearest 
neighbors. What remain to be added are thus exactly the contributions 
from the charges located in the cells in the interaction list. By converting 
the multipole expansion (which was calculated during the upward pass) of 
each cell in the interaction list to a local expansion centered at the center 
of the cell and adding, we finally get the local expansion we wanted. 
This process of translating the local expansion of each cell to its children 
and then at the next refinement level adding the contributions from the 
converted multipole expansions of the ceils in the interaction list at that 
level is repeated down to the maximum refinement level S. where the result 
is a local expansion for each cell describing the potential from all charges 
outside the cell and its nearest neighbors. Notice that there is not a full 
interaction list for cells near the boundary of the computational box when 
periodic boundary conditions are absent. In the presence of periodic 
boundary conditions, each cell has a full interaction list when applying a 
three-dimensional toroidal connectivity of the cells. 
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Fig. 2. Configuration of two unit charges in cells separated by R. 

To get the potential acting on each charge in a given cell from all the 
charges residing outside the cell and its nearest neighbors, the local expan- 
sion is evaluated at the point where the charge is located. The remaining 
contributions from charges inside the same cell and its nearest neighbors 
are calculated directly. The forces are obtained in a similar manner. 

We have thus found potentials and corresponding forces for the case 
where the infinite array of cells is surrounded by vacuum. It is well 
known ~41 that correct results for other values e' of the dielectric constant of 
the surroundings are found by subtracting 

3(2e' ~ 1 ) ./ i q/rJ- 

from the potential energy obtained for vacuum surroundings. This term 
and the force contributions derived from it are single-particle sums and 
may be dealt with separately. 

As an illustrative example for which we derive suitable error expres- 
sions, we consider now two unit charges positioned in the computational 
cell so their interaction is subject to approximation, that is, they do not 
reside in the same cell or in neighbor cells at refinement level S. The con- 
figuration is shown in Fig. 2. The two unit charges are positioned in two 
equally sized cells at positions r~ and r2 with respect to the centers of their 
host cells. These centers are separated by R. No matter where in the com- 
putational cell the charges are positioned, the configuration in Fig. 2, 
where each cell is part of the interaction list of the other cell, will occur at 
some refinement level in the FMM. 

We now proceed as in ref. 13. 
The potential 

1 
~b(R, r j ,  r2) = (17) 

[ R + r 2 - r l [  
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can be rewritten as 

~b{R, r,, r2) = {[R+rz[  [ 1 - 2  JR+ rzi (R +r2)" rl + \ { R + r 2 (  
I /2 t -- 1 

{18) 

and using 

1 = ~ tIP,{z) for Itl < 1 
~ / 1 -  2zt + t z ,=,, 

(19) 

where P,(z) is the Legendre polynomial, and in general writing Ir[ as r, we 
get 

7.  . / I  A 

t,  P,,((R + r,) - r~') ~b(R,r.,r2)= y'  JR+r ,  Jh+' 
/ I = 0 

(20) 

Before going any further, we truncate this expansion to a finite number of 
terms: 

A A 
r2)=,L  , . / ,  P , , ( (R+r2) . r , )+,gL(R,r ,  r2) (21) q~(R, r,, y' iR+r2{,,+, 

= 0 

The Legendre polynomial can be expressed in terms of spherical harmonics 
using the summation formula for spherical harmonics: 

A A pl ( r~ . r2)=  4n / - /  ~rl, Y/(r2) (22) 
21+ 1 Y" v"'*/A~ "' 

Applying (22), we find that the potential becomes 

/, 4n YI, (R+r2)  ,,,,, A r/i, gL( R, r_,) 
~b(R, r,, r_,)-- Z 2 l ,+1  [ - R + r ~  'u Yt, (r,) + r,, 

/I ~ 0  m l  = - -11 

(23) 

In fact, (23) is the unique multipole expansion centered at the origin of the 
potential from charge number one evaluated at the position of charge 
number two. The expansion is valid outside the cell of charge number one. 
Independent of the maximum refinement level S, we will arrive at this 
multipole expansion at the refinement level of Fig. 2 during the upward 
pass. 
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Now we can expand 
A 

t n l  Y/, (R + r2) 
I R + r 2 l / ' + '  

using the following formula, where s = R -  r and IRI > Irl: 

m l  ^ ~ ,  
Y/, (s) x / ~  ~ ( - 1 )'"- 
sit + I - Y', 2 l~  + 1 

/ 0 m ,  = - / ~  2 =  _ _ - 

y,,,, .... 2r 
m ~  A I~ x Y / - ( r ) r -  /,+/= , ) 

_ 

where 

and 

- - D ( I , ,  m i, 12, m 2 )  

(24) 

I 2l+1_ -]- 
V(l ,m)= ( l+m) ! ( l - -m) !J  (26) 

We get 

k /, -~_ /: - 1 )"'-' 
~b(R, r , ,  r2) = (4~z) 3/-" Z Z Z 

/,=o ,,,, =-/ ,  /2= o ,,,_. = -/,  (211 + i)(--~2 + 1) 
ml _ m 2  A /-. Y/,+/, (R) 

xD( l t ,m l , l . ,m=)r l l  i, ( r l )  rt'y"'t-r=)5 i._-, Rl,+12+t- 

+ gL(R, r l ,  r2) (27) 

Again we truncate the infinite sum and apply the fact that Y' / ' ( -~)= 
( - 1 )/y~,,(~): 

1, ~ 12 ( _ 1)1_.+,,,= 
(,b(R, r t, rz) = (4~) 32 ~ ~ (211 ~1 ) (2 l .  + 1) 

/I = 0  t i l l = - - I I  1 2 = 1 )  1 1 1 2 = - - 1 2  

i l l  I - -  1112 

xD(l l ,  m, ,  12, m2)r'l' Y'"'*/, ( r l )  J A  JsY/= -(r2)/" Y/, +/, ~7  +-7-,7, + i(R) 

+ #L(R, r , ,  r2) + ~L(R, r , ,  r2) (28) 

~b(R, r l ,  r2) + ,~L(R, r , ,  r2) + ,~L(R, r l ,  r2) (29) 

V(ll, ml) I/(12, m2) 
D(ll, ml,  12, m2) - (25) 

V(ll + 12, ml - m 2 )  
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Equation (28) is a local expansion centered at R of the potential from 
charge number one evaluated at the position of charge number two. 
During the rest of the downward pass the center of the local expansion will 
be translated once at each refinement level, but the value of ~b(R, r~, r2) will 
remain the same. Thus d~L(R, rl ,r2)+.~-L(R, r l , r2)  is the error in the 
potential when applying the FMM to a system of two charges. In ref. 13 
it is shown that '~'L can be written as 

-~-L(R, r , ,  r2) ----~L( - R ,  r_,, rl) + g*(R, r t , r2) (30) 

where 

,~_ t, k i_, ( - 1 )'"-' 
g'*(R' r '  ' r2) = (4n)~'2 ~ ~ ~ (2l, + 1)(2L + 1) 

I t  = + I t n l  = - -  I I  12 = L 4 -  I 1112 = 12 

1111 - -  I I I ~  
, i - .  I . . . . .  -"- Y t , + l , - ( R )  

x D ( l E , m t , 1 2 ,  m2) r~  ' YT," ( r l ) r s  Y t , _ - ( - r2 )  -~-~i~2+T 

(31) 

The total error in the potential energy can thus be written as 

g~.'t(R, rl ,  r2) = gL(R, r I , r2) + d'c( - -R ,  r 2, r ,)  + ,~*(R, r , ,  r2) 

where 

(32) 

* ~, >- ~2 ( - 1 )"'-" 
~/_(R, rt ,  r2) = (4n) v2 ~ ~ ~ 

(2ll + 1)(2L + 1) 
/ I  = L + I m l  = /1 / 0 - - / ~  2 = t i t 2  = - 

y,,,, - ,,,'-t~ 
, ~ A I I 4-  12 ~ 1 x D ( l l ,  m l ,  I-,, m-,) rll ~ Y'/t" (r l)  .t ........ P ~ x t , - t  - r2 ) 

- - - 

(33) 

and where ~* given by (31). 

3. ERROR E S T I M A T E S  FOR THE F M M  

The main purpose of this section is to derive estimates for fif~m~ and 
6fm,.~ as functions of the number of subdivisions S and the number of terms 
in the expansions L. In Section 3.1, we present some basic approximations; 
in Section 3.2 we formulate the estimates as an S-dependent term times an 
L-dependent expectation value. The results derived in this section are 
summarized in Section 4. 
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3.1. Necessary Approximations and the Formulation of the 
Estimates 

We first consider the necessary approximations, which we use several 
times. Throughout  the derivation of the estimates we use asymptotic results 
in L. We thus formally assume that L ~> 1, although these results actually 
are very accurate even for small L values. We furthermore occasionally use 
the approximation [R + r2[ >> Ir, I (see Fig. 2). Several times we will also 
have to evaluate an integral of the form 

Ir If(r)l 2 dr (34) 
E [ --I/2:/ /2] 3 

where l is the side length of a cubic box and f ( r ) -  f~(r)f2(r)-  The integral 
can be rewritten as 

1,,2 1 

f,, 4-is,/,-)l 2 JI2/,)l 

(3s) +-,/2 V(O(r)) If,(r)l 2 dr 

Here the first term equals the integral over the largest possible sphere 
which can he contained in the cubic box, and the second term is the 
integral over the remaining "corners" of the box. To be more precise, O 
denotes the surface of the unit sphere, and s  O is the subset of all 
angular values corresponding to the subset of the surface of the sphere of 
radius i" centered at the origin residing inside a cube of side length l also 
centered at the origin. It ref. 13 an asymptotic estimate of the error as a 
function of the charge positions is derived. This estimate shows that the 
error is an oscillating function of the positions with a frequency near 
L + 1 ,> 1. As the angular part of the error is oscillating with a frequency 
near L + 1 ~> 1 we may assume that the average of the angular part over 
s is close to the average over the whole sphere. That  is, 

1 fa(,., 1f2(')]2 d '"~ I f .  If2(')12 d ,  (36) 
V(g?(r)) 

Consider now the overall error in the force on particle i for a system with 
reduced density p * =  p~3, where cr is the length scale: 

Af;= q, ~ 4" ~ qi~gL(pi .~, pj. ,, Fi i..~) (37) 
s = 0  . / ~ lL ( i , s )  
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where W/_(Pi..,., P;.,, Fi. j..,.) is the error in the force acting on particle i due 
to the charge of particle j and IL(L s) is the interaction list of the host cell 
of particle i at refinement level s, and where pi..,, and Pi., are the positions 
of particle i and j with respect to the center of their host cells at level s, and 
['i. j..,. denotes the displacement of the two host cells (PL .,-, Pt..,. and Fi. i..,. are 
scaled with respect to the cell size at level s). Notice that WL does not 
depend on S, only on L. 

The overall error 6frm., may then be written as 

/_ 

i = |  

(38) 

To find an estimate for 6J'~m~ we first estimate (Af  ~), the expectation value 
of Af~ for a given position of particle i averaged over all allowed positions 
for all the particles j which are in IL(i, s) for some s. 

To proceed, we assume without proof that 

~ (ffL(a, x, F ) ) ~  ~ 0  for any a (39) 
I" 

where (A)[.,.,,m.,.,.o,,] denotes the expectation value of A averaged over the 
allowed range of the variables in the [subscript] ,  and Z," is the sum over 
all cells in the interaction list of the particle located at a. 

We furthermore assume that all error contributions are statistically 
independent. That is, the charges are uncorrelated with respect to positions 
in space. For simplicity, we further assume that [ q i [ - q  for all particles 
j = 1 ..... N. We then immediately find that 

( A f t )  = q  4(p*)4'3 L 2" ,, N 3 ~. (~gz.(P, ..... x, F)- ')  
s ~ 0 I "  

(40) 

and we can estimate tiff .... by 

/ -  

~J; .... ~ ~ (p,)2'3 q= ( ~L(a, x, F)  2 ) a, x (41) 

and 6J: ...... by 

We have thus already explicitly obtained the S dependence of the errors. 
To get the L dependence and the overall estimate, we just need to find 
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~v(ll tL(a,  X, I ')2)a.x and m a x , ( ~ , . ( ~ L ( a ,  x, F)-')~). This is done in the 
next section. 

3.2. Dependence on L and the Overall Estimate 

As outlined in Section 2, the total erior in the potential energy due to 
two unit charges residing as in Fig. 2 can be written as 

g~_'t(R, r i, r ,)  = gL(R, r. ,  r2) + ,~L( --R, r_,, r. ) + d~*(R, r . ,  r2) (43) 

The function gL(R, r~, r2) c a n  be written as 113) 

8L(R, rl ,  r2 )~  &L(R, rl ,  r2) (44) 

where 

i.I 
(SL(s,r)= ~" s-7~P/(~.~) (45) 

I = L + I  

Assuming that the three contributions in (43) are independent, we can con- 
sider the contribution to the rms error from each term in turn. In Appendix 
B we show that the contribution from g*(R, r t ,  r2) is negligible compared 
to the one from g,(R, r l ,  r2). 

We now turn our attention toward the search for the L dependence in 
the force error. As g*  contribution was negligible, we assume that the 
corresponding force errors from g* negligible as well. We can then write 
the the error on the force on the charge at r2 from the r ~ -  r2 interaction 
a s  

~r2) = 0 ~  t ~ 0(0L(R + r~, r t ) )  + -  O(OL( - -R + r l , r2)  ) 
0r2 0r2 Or2 (46) 

By observing that 

I j 8(6~(s , r ) )_  ~, ~ flp,(~.f)+(g_(~.~)~)_~zp,(z) (47) 
~r t=L+t 

and 

8(CSL(S, r)) 

Os 
- y '  ~ - ~ ( l + l ) p , ( g . ~ ) + ( ~ - ( g . ~ ) ~ ) ~ P , ( z )  (48) 

I = L + I  
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where z = g- f, and assuming again that s z >> i "2, we observe that the second 
expression is negligible compared to the first and then 

"'-' I d 
[f(r)l-'~ L ~ ~:lP+(z)+(~-z~)--~zP~(z) (49) 

/ = L + I  

12E + ]2 = ,=L+,S--7-gTlP,(z) + /= , s-i~e~(z) (50) 

By using the following result for associated Legendre polynomials 

{~p if n 4= k 
fl P'"(-~P~'(z)c~= (n +m)! 2 

, + 1  (~Z-m~ if n k 
(51) 

we obtain 

1 . 2 ( I  I I 9 
([f(r) l-) .<,= }-'. s2, ii 

/ = L + I  

L 1.211 I ) 
/ = L + I  $21 / -  I) 

r 2L 

~ ( L +  1) s21L+2) 

_ _  /2 1 :, r2 . -  i~ 
2-7--~ + ~ s2.- i ~( l + l ) 1 

I = L + I  

(52) 

where we have used L + 1 >> 1 and s-'>> r 2 to get the last approximation. 
By using the results in Appendix B, Eqs. (B4) and (B5), we get the overall 
error estimate from all the particles in the interaction list at a given level as 

{~  }'-' 27rt 1 (__~_fi) L 
(~L(a'x'r)2)'~'x ~ 2 ( L + l / 2 ) ~ l )  (53) 

Similarly, we can find the L dependence of the maximum error, where we 
again arrive at (52), and then 

{max(~r  ( ~ L ( a , x , F ) 2 ) x ) }  ''2 v / ~  ( 4 )  L ~ ~  (54) 

4. M O D E L S  FOR T H E  E R R O R S  

In the previous section we obtained theoretical estimates for the 
expected errors in the case of no correlations. The estimates were expressed 
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as functions of the parameters of the FMM, that is, the number of terms 
in the expansions L and the number of subdivisions of the computational 
box S. Now we can make a model for the expected error, again as a func- 
tion of L and S. 

Assuming that the user measures the charge size q in units of elemen- 
tary charge e, and that the user has chosen a length scale a, the model of 
the error tiff  .... in units of (e2/a 2) is 

....... /27rr \  '/2 / 8 s \ ' / 6  1 (~3_~)a 

6 f  .... ~._~__) ( , , ) - ' / 3 q 2 ~ )  ( L + l / 2 )  L x / ~ + I )  (55) 

where N is the total number of charges and p* =pa3  is the so-called 
reduced density for the given absolute density p. 

We have based all estimates on the assumption that the charges and 
their positions are statistically uncorrelated. However, some correlation 
must be expected due to screening effects. In terms on the length of a given 
cell at some level s, the length of these correlations must be expected to be 
proportional to (N/8  s) -t/3. This length should be compared to the effective 
wavelength of the oscillating functions which describe the error. These 
wavelengths are, as previously meritioned, approximately proportional to 
1/(L + 1 ). Based on these observations, we assume that the correlations will 
yield a factor which is a function depending on the single variable 
x = Nt"~/2S(L  + 1 ). We thus arrive at our final estimate for ~frm.~: 

6frm.~= (p*)2,'3 q" __ 1 
( L +  1 / 2 ) L v / ~ +  1) 

x q~ \ 2 ' ( L  + 1) (56) 

where we expect ~ (x ) - -* l  as x - - ,0  (that is, as the charges become 
uncorrelated) and that ~(x)  ---, 0 as x --* oe. 

Independent of the correlations, we expect a maximum to average 
error ration 

~j;ms= L L + ~  ( L+ I )  (57) 

5. RESULTS A N D  D ISCUSSION 

In this section we will compare the derived theoretical models for the 
errors from Section 4 to errors found experimentally. 

82286 1-2-27 
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We use two systems containing 10,000 and 100,000 charges. The test 
system is a simple model of molten salt, NaCI. Ions are represented by 
Lennard-Jones particles carrying plus or minus elementary charge. The LJ 
parameters are given in Table I, (taken from ref. 1), where the Lennard- 
Jones interaction is 

Uu( r )  = 4e[ (G/r)~2 _ ( o . / r ) 6 ]  (58) 

The configurations were prepared by the molecular dynamics method. The 
initial configuration was a crystal with randomly distributed ions and some 
(randomly distributed) vacancies. The density was 2.4 g c m  3. From this 
high-energy configuration the system was cooled to temperature T = 2000 K 
and further equilibrated. The simulation times (about  1 psec for the 
N =  10000 system and 0.5 psec for N = 100000) were not sufficient to equi- 
librate the global charge distribution, but were enough to create local 
charge distribution and liquid structure. 

For  the equilibrated systems, we calculate the forces by the Ewald 
method using very high accuracy (relative errors around 10-~~ These 
forces were used f~.~,ct. We then calculated the forces using the F M M  for 
various L and S values. 

In the following presentation, we have decided to present the results 
for the errors both in tables and figures. The reason is that error com- 
parisons among F M M  users are much easier when tables of errors are 
available, whereas the figures are necessary for a qualitative understanding. 

Tables II and III  list the measured e ..... the no-correlation estimate 
6f '  ........ .mJJrm~ for e ..... the measured e ...... the measured fifn, ax/fifrms and 
finally the estimated 6f '  .... /6frms as functions of L and S for the two 
systems studied. 

First, we observe that the ratio Of, ..... /6f,.m., has the expected strong L 
dependence. The huge values of ~j] ..... /6fr,,,., for accurate F M M  simulations 
is a serious drawback of the method. Figures 3 and 4 plot the measured 
and estimated values for different S. As expected, there is no S dependence. 
The differences are due to fluctuations in Of',,~.,. 

Table I. kennard-Jones Parameters for 
Molten Salt Test System" 

Pair ~r (A) e (cal mole-I) 

Na +. Na ~ 3.64912 6.5 
CI , CI - 3.61705 60 
Na +, CI - 3.63308 16.23 

"Taken from ref. I. 
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Table II. Errors for N =  10,000" 

409 

~/'not:orr/~- 
t S ~rrns ~ [J .... ~ ..... r af, m,)~,o 

3 

4 

5 

6 

7 

8 

9 

10 

3 

4 

5 

6 

7 

8 

9 

10 

3 

4 

5 

6 

7 

8 

9 

10 

3 4 

4 4 

5 4 

6 4 

7 4 

8 4 

9 4 

10 4 

4.10e-3 3.56e-2 1.91e-2 4.66 3.16 

2.13e-3 1.20e-2 1.16e-2 5.44 4.80 

1.00e-3 4.51 e-3 6.70e-3 6.68 6.63 

4.52e-4 1.83e-3 3.69e-3 8.16 8.60 

2.31 e-4 7.86e-4 3.53e-3 15.31 10.77 

I.I 6e-4 3.50e-4 1.78e-3 15.39 13.04 

4.66e-5 1.61 e-4 5.47e-4 11.72 15.49 

2.66e-5 7.55e-5 3.69e-4 13.72 18.03 

I. 13e-2 5.04e-2 6.01 e-2 5.30 3.16 

5.04e-3 1.69e-2 2.98e-2 5.91 4.80 

2.33e-3 6.38e-3 1.47e-2 6.34 6.63 

1.08e-3 2.59e-3 9.15e-3 8.50 8.60 

4.8 le-4 1.1 le-3 4.48e-3 9.31 10.77 

2.38e-4 4.95e-4 2.82e-3 I 1.83 13.04 

1.08e-4 2.27e-4 1.50e-3 13.81 15.49 

5.43e-5 1.07e-4 8.61e-4 15.84 18.03 

2.36e-2 7.13e-2 1.16e-1 4.90 3.16 

1.03e-2 2.39e-2 6.13e-2 5.94 4.80 

4.73e-3 9.02e-3 3.96e-2 8.36 6.63 

2.19e-3 3.67e-3 2.16e-2 9.88 8.60 

1.00e-3 1.57e-3 1.54e-2 15.42 10.77 

4.74e-4 7.00e-4 4.88e-3 10.28 13.04 

2.19e-4 3.21 e-4 2.53e-3 I 1.59 15.49 

1.07e-4 1.51 e-4 1.75e-3 16.40 18.03 

4.52e-2 1.01e-I 2.08e-1 4.60 3.16 

1.98e-2 3.38e-2 1.40e- 1 7.06 4.80 

8.89e-3 1.28e-2 9.19e-2 10.33 6.63 

4.12e-3 5.19e-3 3.28e-2 7.95 8.60 

1.87e-3 2.22e-3 2.19e-2 11.73 10.77 

8.92e-4 9.90e-4 9.97e-3 I 1.18 13.04 

3.97e-4 4.55e-4 5.09e-3 12.83 15.49 

1.99e-4 2.14e-4 3.56e-3 17.93 18.03 

"The exact potential energy was 3681.564059195 and J ~  = 0.138882767180194. 
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Table  III. Errors for  N =  100,000" 

(aJ;,,,,,/ 

3 2 5.02e-3 3.39e-2 2.78e-2 5.53 3.16 

4 2 2.24e-3 1.14e-2 1.51 e-2 6.75 4.80 

5 2 1.01 e-3 4.28e-3 9.49e-3 9.36 6.63 

6 2 4.60e-4 1.74e-3 3.89e-3 8.46 8.60 

7 "~ 2.30e-4 7.47e-4 2.68e-3 11.62 10.77 

8 2 1.07e-4 3.33e-4 1.98e-3 18.60 13.04 

9 '~ 5.07e-5 1.53e-4 8.78e-4 17.29 15.49 

10 2 2.41e-5 7.18e-5 4.77e-4 19.80 18.03 

3 3 1.07e-2 4.79e-2 6.02e-2 5.65 3.16 

4 3 4.66e-3 1.61 e-2 2.97e-2 6.37 4.80 

5 3 2.12e-3 6.06e-3 1.63e-2 7.68 6.63 

6 3 9.75e-3 2.46e-3 9.56e-3 9.81 8.60 

7 3 4.64e-4 1.06e-3 6.45e-3 13.91 10.77 

8 3 2.18e-4 4.70e-4 3.24e-3 14.91 13.04 

9 3 1.02e-4 2.16e-4 1.60e-3 15.63 15.49 

10 3 4.88e-5 1.01 e-4 8.98e-4 18.39 18.03 

3 4 2.15e-2 6.77e-2 1.10e-I 5.13 3.16 

4 4 9.37e-3 2.27e-2 6.66e-2 7.11 4.80 

5 4 4.24e-3 8.57e-3 3.52e-2 8.31 6.63 

6 4 1.95e-3 3.48e-3 2.10e-2 10.74 8.60 

7 4 9.03e-4 1.49e-3 1.07e-2 I 1.84 10.77 

8 4 4.20e-4 6.65e-4 6.26e-3 14.91 13.04 

9 4 1.95e-4 3.05e-4 2.87e-3 14.70 15.49 

I 0 4 9.33e-5 1.44e-4 1.83e-3 19.60 18.03 

3 5 4.23e-2 9.58e-2 2.54e-1 6.01 3.16 

4 5 1.83e-2 3.21e-2 1.42e-I 7.78 4.80 

5 5 8.04e-3 1.21 e-2 8.01 e-2 9.96 6.63 

6 5 3.68e-3 4.93e-3 4,63e-2 12.58 8.60 

7 5 1.71e-3 2,1 le-3 2.53e-2 14.78 10.77 

8 5 7.92e-4 9.4 le-4 1.48e-2 18.63 13.04 

9 5 3.68e-4 4.32e-4 6.36e-3 17.27 15.49 

10 5 1.77e-4 2.03e-4 3.43e-3 19.32 18.03 

"Tile exact potential energy was 36849.35230253 and ./~-m~ = 0.1408438522961307. 
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Fig. 3. The ratio tbr 4/;.,,,/6f.., N = 10, 000. 

Considering the co lumns  with e .... and 6/i  . . . . . .  �9 ..... / f r  ..... we  make  
several observations.  The first is to notice  that the measured error is 
smaller than the no-correlat ion estimate.  Thus we have correlations in our 
systems,  just  as we would  expect. Furthermore,  we observe that e . . . .  and 
cSJl . . . . . . . . . . .  / f r  .... m o v e  closer as S increases. This is very reasonable because 
when S increases (for fixed N)  the function q5 in Eq. (56) tends to 1. In order 
to get a picture of  the correlation function q~ defined in Section 4, we plot 

[~f l lOCO r I" rn l s  ~r l l lS  

2.5 

20 

1.5 

) I 1 I ] I ] I 

S = 2  ~> 
S = 3  * 
S = , I  o 
S = 5  • O /  

'{ �9 o 

3 ,I 5 (J 7 8 ,q l 0 1 I 
L 

Fig. 4. The ratio lbr 4f.,,,/4f,,,~ N =  100, 000. 
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Fig. 5. Experimentally found values for the correlation function r + I)). 

as function of x=Nl/3/2S(L+ 1) (see Fig. 5). It is strongly indicated that 
the correlations indeed can be measured by the single variable x=Nl!3/ 
2S(L+  1). The measured ~(x)  tends to one as x becomes small. This 
strongly indicates that our error estimate (56) is very accurate�9 In practice 
x=NI/3/2S(L+ 1) will be in the range from 0.3 to 1 for an efficient choice 
of S. Thus the errors are reduced by a factor of 0.3-0�9 due to correlations. 

6. CONCLUSION AND PERSPECTIVES 

We have derived an estimate of the root mean square force error for 
the fast multipole method�9 The estimate has been demonstrated to be very 
precise. It is of the form (56), 

Nj/3 
6frms=~(P*,q,L,-~)~\2SUL-~l)) (59) 

An analytic expression was found for the function tp, which denotes the 
root mean square error when no correlations are present. Several impor- 
tant observations can be obtained from this function. First, there is no 
proper geometric factor for realistic L values�9 The decrease in error as L 
increases is due to the factor (V/3/3) L as well as the L dependent coef- 
ficient. In the limit as L ~  oo, the geometric factor is 3/4, ll31 but this is 
more of mathematical interest than of practical use. Another observation is 
that the error also depends on S (for fixed N). This is of importance when 
tuning the method (see below)�9 
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We have not been able to find an analytic expression for the function 
�9 (x) responsible for correlations. However, ~(x) has been properly 
demonstrated experimentally in Fig. 5, and it was observed that ~ ( x ) ~  1 
as x ~ 0 (no correlations), thus validating the no correlation estimate. 

There are several perspectives which derive from having found these 
estimates apart from a better understanding of the method. We shall below 
briefly discuss one perspective, namely with respect to parameter tuning. 

In a reliable simulation one should decide in advance the accuracy at 
which the simulation should be run. Taking this required accuracy as input 
together with the system parameters N, q, and p*, it is possible to find 
optimal parameters L and S by solving the constrained optimization 
problem 

min T(N, L, S) (60) 

NI/3 
subjec t t~  (61) 

where T is the overall computation time as function of N, L, and S, ~) and 
e is the required accuracy (given as a root mean square force error). Thus 
parameters L and S which ensure maximal efficiency and accuracy can be 
predicted theoretically. 

A P P E N D I X  A. T H E O R E M S  FOR E X P A N S I O N  M A N I P U L A T I O N  

Theorem A1 (Making a multipole expansion). Assume that n 
particles are located at positions r~ having charges qi, i = 1 ..... n, and Iril < C. 
The multipole expansion of the potential at the point R, JRI > C, is then 

, yT,(R)  

/ = 0  m = - - /  

where 

i = 1  

The expansion is valid outside the sphere with radius C. 

T h e o r e m  A2 (Translating the center of a multipole expansion). 
Assume that we have a multipole expansion centered at the point to. The 
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expansion is valid outside a sphere with center ro and radius C. Then for 
any point R where I R - r o ] >  C 

A 

i ' $(R) = ~ ,  A'/' Y~"(R - to) 

The center of this multipole expansion can be translated to the origin, and 
it will then be valid for any point R where JRI > Jro] + C, 

[ / H I  Y/, (R) 
q~(R)= L 2 B'/,"'--~-g-I 

/ I = 0 m I = / I 

where 

B','," = ~ ~" "" 21, + 1 A "",,_ +,,_ 
I l l  ~ _ 

/ 2 = 0 t1~2 = - - / 2  

x D ( l l -  1,,_ ml + m,_, I,,_ m~)_ -z,v'"'-'t~" ~ oj16./, 

and D(ll --l: ,  ml +in,_, lz, mz) is defined in (25). 

Theorem ,o,3 (Converting a multipole expansion to a local expan- 
sion). Assume that we have a multipole expansion centered at the point 
ro and Irol > 2C. The expansion is valid outside a sphere with center ro and 
radius C. Then for any point R where ] R - r o [ >  C 

~_ / yT,(R_ro) 
~ ( R ) = Z  Z AT'-- . . . .  

/ = o  . . . . .  / IR-r,,I I+l 

This multipole expansion can be converted into a local expansion centered 
at the origin and valid inside the sphere with center at the origin and 
radius C Then for points R where IR[ < C 

~ " 
~b(R)= E 8,,,, ,,,, ^ /, Y/, (R) R/I 

/ 1 = 0  m l =  I I  

where 

8',':,=1 1),,,, " / ~  E I - 1 ,  ..,: ~,.~_.m2./,.m,) ,.~+,.+, _ _  ~12  ~ m 2 1 1 l l  II + / 2  ~ 0 /  

2ll + 1 12= o ,,,2= -/, 

and D(l~, m~, Ii, ml) is defined in (25). 

Theorem A4 (Translating the center of a local expansion). Assume 
that we have a local expansion centered at the point ro. The expansion is 
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valid inside the sphere with center ro and radius C, C >  Ir,, I. Then  for any 
point  R where I R - r o l  > C 

r Z 2 
/ = 0  ; . , : = - /  

8T Y7'(~-r,,) IR- r,,l' 

The center of  this local expansion can be t ranslated to the origin, and will 
then be valid for any point  R where IRI < C - I r o l ,  

,~(R) = Y. c,,;,, r,,;,,(f~) 8', 
/I = 0  m l  = - - / I  

where 

~_ l: ( -- 1 ) Z, 
I I I  I _ _  c,,-v'~(-1)" E E 2(L-/~+l 

/2 = / I  1112 = 12 - 

I l l ~  I I I  2 - -  Ill[ x BI2-E(l > m2, 12 - - I t ,  m 2 - - m l )  Y/_,-/, (ro) 

and 

2l I + 1 V ( l j - 1 2 , m , - m e )  V(12,m2) 
E( lt, mr, 12, m 2 )  - -  

2(11 - 12) + 1 V(ll, ml) 

where V(l, m) is defined in (26). 

A P P E N D I X  B. 81. V E R S U S  # *  

We will show that  the contr ibut ion to the error  in the potent ial  f rom 
,~* is negligible c o m p a r e d  to the cont r ibut ion  f rom ~L- 

First we consider  gL(R, r l ,  r 2 ) ~  6~L(R + re, rl ). We have 

~,, I "12 1 
(~L(S, r )2)<  ~ = s211+l~2l+ 1 (B1) 

/ = L + I  

where we have used the fact that  

0 if Ii :~ l, 
I 

f Pl,(z) Pl:(z) dz = 2 if I I = l, 
- I  2-ll  + 1 - 

(B2) 
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Assuming that  L >> 1 and s->>r-," ~ we get 

1 r 2 ( L +  I1 

<6~(s, r)2")~" ~ = 2 l +  1 S 2 1 L + 2 )  (B3) 

To  obtain an estimate for 6~ also averaged over the lengths R. r~ and r .  
we use the following asymptot ic  results in L: 

( [ Y I - )  y~ t-,/2-,/2]~ ~ 8L(L + 1/2)(L + 1) (B4) 

and 

~ ( I F + y I _ Z , L + Z , )  2re (~)2L 
y~ t -J/2: i/2l ~ ~ (L + 1/2)(L + 1 ) (B5) 

i., 

Both these estimates have relative errors within 10% for L >/3. We then get 

243 rr /_/r~\2~a + t~ 

(OL(s, r ) - ' ) s . r~  32 ( L +  1) 3 ( L +  1/2)(L+3/2)(L+2) ~- f - )  (B6) 

where we again have used the assumptions that  L >> 1 and s 2 >> r 2. We now 
wish to show that the corresponding ~* contr ibut ion  is negligible. Start ing 
from (31) and using the facts that  the Y~" are o r thonormal  and 

I, L Da(ll, ml, 12, m2) (2It -I- 212)! 
-1~(~_, + 1 )  2 -  (21~ + 1)! (212+ 1)! ,,,, = - / ,  ,,,~ = - / . ,  ( 2 1 t  + 

(B7) 

we find that  

~- L (2ll + 2l_,)! ~2/, .._~/. ~, -2. ,  +/, + t l 
(l&*12)r,,G,~ = Z (2l, + 1)! (212+ 1)! -,  "2 -- - 

/ l ~ L + l  / 2 = L +  I 

~- 1 ' x~ I' d x l  = "x~_ '~ dx~ 
/ l = L + l  12= +1 rlF2R 

(2ll + 212)[ R -2" '  +t,I-I  
x (BS) 

(21t)[ (2l_,)! 
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We notice that 

(2ll +212)! R _ 2 ( I , + I , I _ I 1  ~ d 21"- 1 
(2ll)! (212)! (2l._)! d R  2t'- R 21' + I 

1 , 1 
= ~ fog'- t >-+ '(t + R )  21' + ' 

dt 

27ri \ R J  .' t 2t'-+ ' ( t  + 2) 2'' + ' d t  (B9) 

where C O denotes a circle with radius r centered at the origin in the com- 
plex plane. Applying this, we can evaluate the sums and we now have 

, ~  1 [ dt 1 
( I gc l - )g '~ ' f~=r ~ r2R 2n~ l 'Oc . l ,  t(t+2------~ 

t] ( 2x, )_,,L+,, 
x dx ,  \ R ( t t + ~  1 - { 2 x , / R ( t + 2 ) )  2 

fl , 
x dx2 \ R t  J 1 - ( 2 x z / R t )  2 (B10) 

We now get 

• Ii (ax)J , 
1 -~-x)'- ax 

1 (ar)J { ~' 2k(ar)2['~ 
- j +  1 1--(-~-7r)2 ~ l - - [ 1 - - ( a r )  2] k~o.= j + 2 k +  l j  

By noticing that 

~- 2k(ar)2k [1 x-" 
k/'o.= j + 2 k + l  

1 - ( a r ) 2  ~ 2k(ar )  2k 

< J + ~ k = o  

1 2(ar) 2 
j +  1 1 - ( a r )  2 

we can write 

1 f~ (ax? 
r 1 -- (ax )  2 d x - j  + 11_---(~t2 1+0 ) - ~  (B l l )  
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Using the above, we get 

, . .  1 //4r, r2~ 2`L + "  
(]d,. ]->C. ~. i~ = R2zri(2(L + I) + l )2 \ - -~_ ,  j 

x c , ~ , \ t ( t + 2 ) J  

l 1 
x 1 - (2r=/R(t + 2)) 2 1 -- (2r2/Rt) 5 dt (B12) 

Consider the integral 

~- ,', ~ f ( t )ct t  (9]3)  

where j>> l, j odd, and f ( t )  is some function of t. We can approximate the 
integral by an asymptotic expansion: 

;;,,( , ), f ( t ) d t = f ( - l )  -] 1 + 0  (BI4) 

Applying this, we get 

, ~ ] ~4rtr2"~ 2 ' L + ' '  

(l~Ll->'r2"~f~R2v/-~ [2(L + l )+ l]Sa \ R'- J 

I 1 
x 

1 - -  ( 2 r  t / R ) 2  1 - -  (2 r2 /R)  2 
(BI5) 

Only the minimum values of R (R = 2) are of importance, and we then get 
a term 

(rt)_~L + j, - - _ 1  (rl):,L+ t) L " l _ ( r t )  2 0',)2/= ~ (r,) 2i (BI6) 
.i = o .i = L + I 

We find the expectation value using (B4). 

(rl)2j = 27 2(L+1~ 

i= ~ ..., 8 ( g + l ) ( g + 3 / 2 ) ( g + 2 )  

- ( 4 )  - 
x ~ ( L + I ) ( L + 3 / 2 ) ( L + 2 )  2(.~ L - I )  

.j=L+~ j ( j+  l /2)( j  + 1) (B17) 
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Now we can write the overall expectation value for [g , [ z  where we have 
multiplied by 6 because there are 6 cases having R = 2: 

( I ,~*12) _ 4 x / ~ [ 2 ( L + l ) + l ]  52 8 ( L + 1 ) ( L + 3 / 2 ) ( L + 2 )  

( L  + 1 ) ( L  + 3 / 2 ) ( L  + 2 )  - - 
x (B18) 

./= ~ j ( j +  1/2)( j+ 1) 

Observing that 

( L + l ) ( L + 3 / 2 ) ( L + 2 )  - " - 

, t j ( j +  l / 2 ) ( j+  1) <7  
for 3~<L~<10 

(B19) 

we finally get 

<lJ~l-'5 = 
15309 (])~_,L + ,, 

128 x/~ [2(L + I) + 1 ] ~ 2 (L + 1 )2 (L + 3/2)-' (L + 2) 2 

(B20) 

Consider now the ratio 

( l U L l - 5  

( ~L(S, r)25 

6 3 ( L + l ) ( L + l / 2 )  / 3 x / ~ )  2'L+'~ 
4~ 3 -'[2(L + 1) + 1] 5 2 (L + 3/2)(L + 2) 

(B21) 

Observing that r < 0.3 for L ~< 10, we have shown that the ,~* contribution 
is negligible compared to the corresponding dL contribution. Here it is very 
important to notice that this only applies for L ~< 10, as the d ~* contribution 
becomes significantly bigger than the two other contributions for very large 
L ( r =  12.6 foi- L =20). 
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